Contribution to e-Training in Military & Humanitarian Demining Unmanned Robotic Systems

Andrzej Masłowski

Special Projects Division
Institute of Mathematical Machines,
Warsaw, Poland
Outline

1. Motivation and overview of the platforms and systems – TIRAMISU Project & Others
2. Training and multi-level training technologies.
4. Requirements for trainers - simulators.
5. Prototypes of an exemplary trainer – simulators.
6. Conclusion
Objective?
Enhance capacity building

How?
Depiction of needs for and characteristics of training tools
Development of training tools
EUB-defined application of the developed tools in training of operational and management staff
Development of a training and support system

- Development of PC-type trainers-simulators for training operators of robots
- Development of an e-learning methodology
 - training tool with virtual robots
 - use of semantic information in a human-machine-interface

Source: IMM
UGV in HUDEM

RMA, ROBUDEM and synergy FP7-ICARUS (Unmanned Search and Rescue Operations)

LADERO Project (ISR-UC)
ISRTiramisu multi-sensor carrier

CSIC, DYLEMA project

LOCOSTRA, DIMEC/PIERRE/SNAIL-AID
Remotely controlled vehicle Leviathan
Reconnaissance robot
Tactical support robot
Engineering support robot
Engineering tactical support platform

SEGMENT I

ACTIVE COUPLER

SEGMENT II

120°

45°
The comprehensive set of trailer and demining machine
Pyrotechnic mobile robots
Mobile Platform Equipment (1)

TCP-Box
- WLAN-Mesh-Network
- Positioning Sensor integrated
Mobile Platform Equipment (2)

5DoF Robotic Arm

Selection of a 5 DoF robotic arm as candidate for carrying out close-in detection operations in field conditions.

Mechanical adaptation of the selected 5 DoF robotic arm for its integration in one of the proposed remotely controlled inspection platforms.

With the grass-cutter selected as the active tool, the robot “cleans” the area to be scanned.

The sensor head contains a metal-detecting set and a network of rangefinders mounted around the mine-detecting set. This network helps the scanning manipulator control the sensor head’s height and orientation.
Mobile Platform Equipment (3)

FSR Husky remotely controlled/autonomous mine detection platform
Mobile Platform Equipment (4)

Test setup for detector, 6 x (upper)

Integrated system (right) with Wifi Connection (3 antennas)

Accesspoint inside tEODOr
Motivation (1)

• Multi-robots teams, as well as groups made up of robots and humans can be a subject of supervision and command by system operators.

• Thus, there is a need to develop adequate methods and means of training. Trainer - simulators, taking advantages of computer games technology and e-learning, are the obvious solution.

• e-training - understood as an extension of e-learning: e-learning consists in computer-network-based obtaining of knowledge, e-training has in view obtaining of operation skills.
Motivation (2)

- Mines and others EOD, first of all in the form of improvised explosive devices (IEDs), become now the threats.
- There is a need for simulators of different tele-operated robots or platforms.
- Flexible software platform (framework) for designing e-Training for different surveillance and inspection robots and different environments.
Tele-operated robots
- manoeuvring problems

1. Amount of degrees of freedom.
2. Big number of control buttons and joysticks.
3. Little knowledge of the scene.
4. Unpredicted problems (lack of the communication range, failure of the part of the robot).
5. Separation of the robot from the operator.
Training tasks and training program generation (1)

Training tasks have a form of games played by a trainee in a virtual world composed of the virtual robot with real or virtual control console, and of virtual environment.

A typical task, both for earth-surface and underwater or flying mobile robot in a surveillance system, consists in inspection of a terrain/water body, detecting an explosive device and detonating it or moving to determined place (for example to a proper container).
Training tasks and training program generation (2)

For every task, the following elements should be specified:
environment;
robot’s initial position and orientation;
a mission to fulfil;
events treated as faults;
expected reaction of the system to trainee’s actions.
Simulators - motivation

1. Training of the candidates in order to decrease/eliminate difficulties with steering of the robot.
2. Developing particular skills (for example: precision, planning, reflex, orientation).
3. Handling with input devices.
4. Lower costs of the training of the operators.
5. Commercial software.
Framework - motivation

1. Simulators
 - Limited number of robots, scenarios, environments
 - Defined ranking methods for training.

2. Building new simulator from „scratch” – huge programming work.

3. Lower costs of the production of the simulators.
Vision of the system

Multi-level training:
1. Different skills developing.
2. Profiling into groups of advance.
3. Cheaper than one-level (cost of computer hardware).
Multi-level training

Trainers of the Level 1 – built with use of typical PCs. VR technology is applied. Robot, its environment and control console are simulated.

Trainers of the Level 2 – built with use of PCs with real robot control consoles connected. VR technology is applied. Robot and its environment are simulated.

Trainers of the Level 3 – trainers of the Level 1 or 2 with application of AR technology - real robot in the real environment with simulated elements added. A trainee uses special helmet.
Trainer – simulator of the level 2
Tiramisu training system

The system allows for use in TIRAMISU project for training of multiple UGV operators during one training scenario. Maximum number of user is 10. The core of the system are VORTEX physics engine, for robust simulation, and OSG (Open Scene Graph) for rendering purpose. The system allows for online, robust simulation of the robots and environment. System architecture allows for scalability: new user can be attached dynamically. The robots can interact with each other, including colliding and realistic gripping simulation.
System features

Dynamic environment modeling
Dynamic robot customization
High fidelity rigid body simulation
Interactions: collisions, high accuracy joint, models friction, gripping etc.
Event based mission execution
System overview

The training system allows for multi robot simulation and interaction. It was designed to work on multiple computers, with a powerful central one as server.

Physics layer: **VORTEX** engine
Visualization layer: **OSG** (Open Scene Graph)
Simulation system architecture
Simulation server

The main server is responsible for performing all physic simulation and distributing it among the trainee clients. The server is also directly connected with trainer tools, which allow for modifying the environment, adding robot models and customizing them. The trainer is also responsible for adding events that define the mission scenario. All information are defined in XML files.
Trainee client

The client allows the trainee to control the robot. This module only has the OSG visualization layer. All environment changes are send from the server. The trainee has access to robot controls and simulated robot sensor feed (cameras).
Communication

The system communicates via TCP and UDP packages

TCP:
• New client initialization: dynamic client connection
• Robot commands and control

UDP:
• Synchronization of the environment between server and clients: broadcast
• Only changes in the environment are send
Robot models (1)

iRobot – PackBot

LOCOSTRA with different configurations: trailer, UXO detector
Scenario – UXO removal (1)

1. Detection of UXO.
2. Robot transportation.
3. UXO securing.
4. UXO removal.
Scenario – UXO removal (2)
ARCHITECTURE OF TRAINING AND SUPPORT SYSTEM IN THE CLOUD
MULTI ROBOT SIMULATOR IN THE CLOUD AVAILABLE VIA NVIDIA GRID
SEMANTIC MAPPING
Colour data from UAVs
Thermal data (thermal layer)
Data from geodetic Z+F scanner
Semantic layer
Street view from robot camera
Data fusion
Scenarios for UGV remotely control training
Scenario for UAV remotely control training
Augmented Reality scenario for LUGV remotely control training
Conclusion

• The complete training is composed of interrelated tasks - games, and can be depicted in the form of a graph, which vertices represent tasks, and edges - paths between tasks.

• A concept of systems with built-in training possibilities, is presented. Procedures of generation of virtual robot, virtual console, virtual environment, training tasks, and training program, finding their applications in trainers - simulators of the system are shown. Augmented reality techniques can be applied.
E-TRAINING

COMPUTER GAME E-LERNING COMPUTER SIMULATORS