Assisted Explosive Ordnance Disposal: Teleoperated Robotic Systems with AI, Virtual Reality, and Semi-Autonomous Manipulation for Safer Demining Operations

Mario Malizia

Ana María Casado Faulí, Ken Hasselmann, Emile Le Flécher, Geert De Cubber, Rob Haelterman

20th International Symposium Mine Action

- I. Introduction
- II. System Architecture
- III. Methodology
- IV. Conclusions

- I. Introduction
- II. System Architecture
- III. Methodology
- IV. Conclusions

• 4,710 people were injured or killed by landmines across 49 states in 2022

• Civilians accounted for 85% of landmine casualties recorded in 2022, with half of them being children (1,171)

• Syria and Ukraine reported the highest number of annual casualties

Source: https://reliefweb.int/attachments/cd8949c8-13e4-4b24-9f78-ee1b980305f4/landmine-monitor-2023_embargoed.pdf

 The majority of casualities reported in 2022 is to be addressed to the usage of Improvised Explosive Devices (IEDs)

Note: APM=antipersonnel mines; AVM=antivehicle mines; CMR=cluster munition remnants; ERW=explosive remnants of war.

Source: https://reliefweb.int/attachments/cd8949c8-13e4-4b24-9f78-eelb980305f4/landmine-monitor-2023_embargoed.pdf

 The majority of casualities reported in 2022 is to be addressed to the usage of Improvised Explosive Devices (IEDs)

Note: APM=antipersonnel mines; AVM=antivehicle mines; CMR=cluster munition remnants; ERW=explosive remnants of war.

Source: https://reliefweb.int/attachments/cd8949c8-13e4-4b24-9f78-ee1b980305f4/landmine-monitor-2023_embargoed.pdf

• In this context, Belgian Defence funded the BELGIAN project

• The project has a duration of 4 years (Jan 2024 – Dec 2027)

• The goal consists in developing an Unmanned Ground Vehicle with semi-autonomous capabilities for precise manipulation of dangerous objects (EOs, IEDs.).

• The **Belgian EOD Group** is a partner of the project, thus allowing to have a direct feedback from the end users as well as a validation of the proposed solution

• Different field trials are foreseen in the years of the project to collect data and validate developed algorithms in real case scenarios (Meerdaal Military Base, BE)

- I. Introduction
- II. System Architecture
- III. Methodology
- IV. Conclusions

System Architecture

- State of the art platform in UGV research
- High payload to support different sensors integration

Clearpath Robotics Husky AV200 UGV

System Architecture

- I. Introduction
- II. System Architecture
- III. Methodology

IV. Conclusions

Methodology

Methodology

Methodology | Feature-Based Sensor Processing

- Extracts specific features or characteristics from sensor data
- Algorithms are designed to detect and use these predefined features for various tasks

Methodology

Methodology | AI-Based Sensor Processing

- Uses machine learning to process sensor data
- Learns patterns and representations directly from raw sensor data without predefined features

System Architecture

Methodology | Real-Time Virtual Reality Streaming

- Provides operators with immersive visual feedback through VR headsets, enhancing their situational awareness and control precision
- Process sensor data to create real-time 3D models, offering operators comprehensive situational awareness

System Architecture

Methodology | Assisted Robotic Manipulation

- Corrects operator commands for precision and safety in real-time
- Enhances operator's control inputs to coordinate robotic arm / UGV movements

- I. Introduction
- II. System Architecture
- III. Methodology
- IV. Conclusions

Conclusions

• The objective of this project is to advance the state of the art in AI-based assisted robotic manipulation of EODs and IEDs

• Within the 4 years of the project, we will conduct field tests to validate our approach in realworld scenarios

• The main challenge resides in the safe and precise manipulation of IEDs and associated data fusion generating useful insights for EOD experts

Thank you for your attention!