

21th Mine Action Symposium 1-3 April 2025

Autonomous Mobile Manipulation for Safe and Efficient Landmine Disposal

Alessandra Miuccio,

Co-Authors: Timothée Fréville, Emile Le Flécher, Charles Hamesse, Geert De Cubber, Rob Haelterman

1.	Introduction
2.	Goals and Contribution
3.	System Description
4.	Methodology
5.	Conclusion

In 2023:

- 5,757 causalities from landmines and explosive remnants
- 84 % of the victims were civilians

Number of mine/ERW causualties annually: 1999-2023 [1]

Note: APM=antipersonnel mines; AVM=antivehicle mines; CMR=cluster munition remnants; ERW=explosive remnants of war.

A deminer conducts manual clearance operations in a mountainous area in Khan Abad district, Afghanistan. © FSD, July 2024 Manual mine clearance operation [1]

Casualties by type of mine/ERW in 2023 [1]

Humanitarian Demining Process Steps:

1.	Introduction

Goals and Contribution

System Description

Methodology

Conclusion

2.

3.

Goals and Contribution

1.	Introduction

Goals and Contribution

System Description

Methodology

Conclusion

2.

3.

System Description

The Mobile Manipulator:

Mobile Platform

Combination of the mobility of the mobile platform with the dexterity of a manipulator

System Description

Sensors Layout:

- Exteroceptive sensors: LiDARs, RGB, IR Panchromatic spectral cameras
- Proprioceptive sensors: IMUs

1.	Introduction

Goals and Contribution

System Description

Methodology

Conclusion

2.

3.

Next Best View Planning

Find the sequence of points that maximizes the coverage of unseen parts

3D Reconstruction

Produce a 3D model starting from multi-view images

Grasping Feasibility Analysis

Identify grasp-feasible regions and relative grasp quality, aiding grasp planning and execution

Path Planning

Compute the path to reach the views computed by the NVB planner and the grasping point, combining the platform and arm's movement

Mobile Manipulator Path Planning [5]

1.	Introduction
2.	Goals and Co

Goals and Contribution

System Description

Methodology

Conclusion

3.

Conclusion

- 3D Reconstruction of the surroundings of the mine.
- Mines mobile manipulation.
- Enhancing safety and efficiency in demining operations.

References

[1] Int Campaign to Ban. Landmines, "Landmine Monitor 2024," ICBL-CMC, Geneva, 2024, <u>https://www.the-monitor.org/reports/landmine-monitor-2024</u>

[2] Y. Hong, J. Kim, G. Cha, E. Kim, and K. Lee, "See-Then-Grasp: Object Full 3D Reconstruction via Two-Stage Active Robotic Reconstruction Using Single Manipulator," *Applied Sciences*, vol. 15, no. 1, p. 272, Dec. 2024, doi: <u>10.3390/app15010272</u>.

[3] The AI Summer. NeRF: Neural radiance fields explained, https://theaisummer.com/nerf/

[4] N. Chavan-Dafle, S. Popovych, S. Agrawal, D. D. Lee, and V. Isler, *Simultaneous Object Reconstruction and Grasp Prediction using a Camera-centric Object Shell Representation*, 2022, arXiv: <u>https://arxiv.org/abs/2109.06837</u>

[5] Zhang, Shijun, Shuhong Cheng, and Zhenlin Jin, "A Control Method of Mobile Manipulator Based on Null-Space Task Planning and Hybrid Control" Machines 10, no. 12: 1222, Dec. 2022, doi: <u>10.3390/machines10121222</u>

Thank you for your attention